TRUNCATED QR ALGORITHMS AND THE SOLUTION OF
LARGE-SCALE EIGENVALUE PROBLEMS*

R. B. LEHOUCQ!

Abstract. The QR algorithm has emerged as the general-purpose method of choice for com-
puting the Schur decomposition of a matrix. For most large eigenvalue problems, however, the QR
algorithm cannot be used because of the explicit storage of the matrix and because often only the
action of the matrix upon a vector (or group of vectors) is available. Typically, only a small number
of eigenvalues and the associated invariant subspace are required. This article considers a truncated
QR algorithm. We show that a truncated QR algorithm is a generalization of Sorensen’s implicitly
restarted Arnoldi method to block Arnoldi reductions. Moreover, implicitly restarting an Arnoldi
reduction is simultaneous iteration with an implicit projection step to accelerate convergence to the
invariant subspace of interest. This is a generalization of the Rayleigh—Ritz procedure on a block
Krylov subspace for a non Hermitian matrix. The moral of our story is that the large scale eigenvalue
problem is intimately involved with the dense one.
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1. Introduction. The QR algorithm is a general-purpose method for computing
all the eigenvalues of a matrix. The LR-iteration of Rutishauser [31], which preceded
its discovery, is based on a triangular sequence of similarity transformation. The QR
algorithm, developed independently by both Francis [11, 12] and Kublanovskaya [20],
instead uses a sequence of unitary similarity transformations. The algorithm itera-
tively computes an approximation to a Schur decomposition of the matrix. The QR
algorithm is implemented in the EISPACK [42] and LAPACK [1] software packages.

Unfortunately, for large-scale eigenvalue problems, the QR algorithm is not a
practical method. An eigenvalue problem is considered large if it cannot be solved
with the standard QR algorithm (as implemented in EISPACK and LAPACK). This
QR algorithm relies on dense matrix similarity transformations that require explicit
storage of the matrix. For most large eigenvalue problems, this requirement is pro-
hibitive; quite often, only the action of the matrix upon a small group vectors is
available. Moreover, users typically require only a small number of eigenvalues rela-
tive to the dimension of the problem. A further complication is that a representation
for the associated invariant subspace 1s often required.

This article consider a truncated QR algorithm. We show that a truncated QR
algorithm 1s equivalent to simultaneous iterations. This relationship allows us to
exploit the well-known connection [29, 47, 50] between simultaneous iteration and
the QR algorithm. In [48], Stewart presented a generalization of the Rayleigh—Ritz
method to non-Hermitian matrices. This involved performing an ezplicit projection
step on the matrix with orthonormal columns representing the subspace. We show
that a block truncated QR algorithm performs simultaneous iteration with an implicit
projection step. A block truncated QR algorithm is an extension of Sorensen’s im-
plicitly restarted Arnoldi method [43] to block Arnoldi reductions. The moral of our
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story is that the large-scale eigenvalue problem is intimately involved with the dense
one.

Since our goal is to provide a viewpoint in which to consider connecting the large-
scale eigenvalue problem with the small one, this report works with general complex
matrices. We will mention the standard simplifications when the matrix is Hermitian
or can be computed in real arithmetic. The article i1s organized as follows. Notation
is given in § 2 and § 3 where the eigenvalue problem introduced. The QR algorithm’s
connection with simultaneous iteration is the subject of § 4. The Arnoldi method,
including a block formulation, is discussed in § 5. Because it will prove fundamental to
the development of a QR algorithm, we discuss some of the technicalities of the implicit
QR algorithm in § 6. We discuss how to compute a partial Schur decomposition from
an Arnoldi reduction in § 7. The stage is finally set in § 8 for the main subject of a
truncated QR algorithm. We review restarting methods for eigenvalue problems in
§ 9. The convergence of a truncated QR algorithm is discussed in § 10. Two important
issues needed for a practical truncated QR algorithm are summarized in § 11.

2. Notation and Definitions. This section establishes the basic notation to
be used in this article. We employ Householder notational conventions. Capital and
lower-case letters denote matrices and vectors, respectively, while lower-case Greek
letters denote scalars.

The order of A will always be denoted by n. The identity matrix of order m 1s
denoted by IL,,. The jth canonical basis vector is denoted by e;, the jth column of
the identity matrix, and E; = [ e _1)p+1 T € ] , where b 1s a positive integer.
We will call b the block size.

A matrix of lower bandwidth b will be called a banded upper Hessenberg matrix.
We drop “upper” when the context is clear. Omission of the word band implies that
the block size is one. We say that a band Hessenberg matrix is unreduced if all the
elements on the bth subdiagonal are nonzero.

We now define several matrices that will prove useful. H; denotes a band Hessen-
berg matrix of order b5 of lower bandwidth &; T; denotes an upper triangular matrix
of order j, regardless of any block size b; and F; and U; denote matrices with n rows
and b columns, where the subscript acts as an index. On the other hand, V;, Z;
denote matrices with n rows and bj columns. U; denotes the jth block of b vectors
of V., and Gy ; denotes the square matrix of order b located in the ¢, jth block of
order b of H,,. Note that G4, ; is an upper triangular matrix. These matrices will
define the dimensions of other matrices used in this article.

The transpose of a vector x is denoted by x”, and the complex conjugate of x”
is denoted by x’. The norms used are the Euclidean and Frobenius, denoted by || - ||
and || - ||F, respectively. The range of a matrix A is denoted by R(A).

3. The Eigenvalue Problem. Let A be a real matrix of order n. We are in-
terested in a specified set of k < n solutions to the matrix eigenvalue problem

(3.1) Ax = Ax.

The eigenvalues and eigenvectors of A are denoted by A; and x;, respectively, for
j = 1,... n. We shall refer to these k£ eigenvalues as the wanted ones. The wanted
eigenvalues of A requiring approximation typically are contained within some convex
set of interest in the complex plane. Examples include those nearest the origin and
of largest real part. An important exception might be the dominant eigenvalues of
A, those largest in magnitude. The following decomposition proves central to the
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o Let A = A and let {r, }P_1 be a sequence of real shifts. Set yASTI
e Fory=1,...,p

1. Compute the QR factorization QW RV = AU-1D _ Ti—11n.

2. Update AU) — ROQWYW 4 r,_11,,.

3. Update Z() — Z() Q).

Fia. 4.1. The QR algorithm

eigenvalue algorithms considered in this article. Its value i1s in providing us with
a canonical form for which stable algorithms may be developed. For us, a stable
algorithm computes the exact Schur decomposition of nearby matrix.

THEOREM 3.1. (Schur Decomposition) If A € C™*", then there exists a unitary
Z € C™"*" such that

(3.2) ZHAZ =T,

where T 1s an upper triangular matriz. The eigenvalues can appear in any order along
the diagonal.

Proof. See [14, page 313]. O

Let D be a diagonal unitary matrix. Then (ZD)¥ AZD = D#TD has diagonal
blocks equal to those of T. Thus, apart from the eigenvalues of multiplicity larger
than one, the decomposition is essentially unique, given some ordering of the eigen-
values. Denote the leading principal matrix of k blocks of T by Ty. Let Zj be the
corresponding columns of Z. Then AZy = Z;T} 1s a partial Schur decomposition of
A of order k. When A is Hermitian T is a diagonal matrix, and hence the eigenvalues
are real numbers.

This decomposition is computed by the practical QR algorithm in the EISPACK
and LAPACK software packages. A real Schur decomposition allows all computation
to take place in real arithmetic; see [14, p. 341] for further details. There is also
software to reorder the computed Schur decomposition.

The methods reported here attempt to compute a partial Schur decomposition for
A with the group of the wanted eigenvalues located on the diagonal blocks of Ty. The
methods considered require Q(kn) storage and O(kn?) work. The full decomposition
requires O(n?) storage and O(n?®) work. We say an eigenvalue problem is large if the
dense QR algorithm is prohibitive, in storage and/or efficiency.

4. The QR Algorithm. We quickly examine the QR algorithm and some of its
fundamental properties. A wealth of excellent material exists on the QR algorithm.
Thorough introductions are given by Golub and Van Loan [14], Parlett [29], Stew-
art [47], Watkins [50, 51] and of course Wilkinson [53]. Figure 4.1 lists the explicitly
shifted QR iteration.

The following properties are consequences of the iteration. They are easily estab-
lished using mathematical induction; see, for example, [47, pp. 351-354]. Assume the
notation of the algorithm listed in Figure 4.

THEOREM 4.1. AZP) = ZP)A®),

THEOREM 4.2. Let T®W) = R®) ... RM. Then ZW)TE) = P(A), where P()\) =
(A=) (A= 7).

Theorem 4.1 gives that A(?) is unitarily similar to A. What is remarkable is that
the off-diagonal elements in the last row of A®) approach zero with the choice of zero
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shifts. The second theorem explains why. It follows that
(4.1) AP [er - e ]= ng)Tgp)a

where Tgp) is the leading principal matrix of order i of T(*) and ng) contains the

first ¢ columns of ng). Thus, the QR algorithm computes the QR factorization of
the matrix on the left-hand side of (4.1). But this expression is nothing more than
simultaneous iteration (with the starting subspace being the span of the first b columns
of the identity matrix). Since 1 < b < n, the QR algorithm is performing a nested
sequence of simultaneous iteration. Orthonormal iteration is a more descriptive term
because the columns of Z(®) are themselves orthonormal.

We emphasize that the above two theorems imply that after the initial QR fac-
torization of A, orthonormal iteration can be carried out without explicit use of A. It
is also clear that the QR algorithm is invariant under a unitary change of basis. To-
gether, these two observations suggest that a similarity transformation might allow us
to perform orthonormal iteration more efficiently. Indeed, a truncated QR algorithm
1s motivated precisely by this observation.

The basic convergence of the iteration is easily established. If the eigenvalues
of A are ordered in decreasing order of magnitude, it can be shown (under a mild
condition on the starting subspace) that the off-diagonal elements in row i to left of
the diagonal element converge to zero at a rate of proportional to |A;/A;—1|. Thus,

the ng)Tgp) tends toward a partial Schur decomposition for A associated with the
dominant ¢ eigenvalues. See [14, p. 333] for details.

A comprehensive geometric convergence theory for the shifted QR iteration is
presented by Watkins and Elsner [52] within the more general framework of generic GR
algorithms. A GR algorithm is an iterative procedure in which the QR factorization
is replaced with any other decomposition of the form GR = H — 71, where R is upper
triangular and G is a nonsingular matrix.

4.1. A Practical QR Algorithm. We list and briefly discuss the issues in-
volved in a practical implementation of the QR algorithm. The remainder of the
report will discuss these issues in more detail when when we wish to draw analogies
between a full and truncated QR algorithm.

1. Initial reduction to upper Hessenberg form. A is initially reduced to upper
Hessenberg form via a unitary similarity transformation. Each step of the
resulting QR algorithm then becomes an O(n?) process instead of an Q(n?)
one.

2. Selection of shifts. In practice, a set of shifts are computed that lead to
quadratic and cubic rates of convergence for non-Hermitian and Hermitian
matrices, respectively.

3. Deflation. Since the off-diagonal elements in the last row AU) tend to con-
verge to zero rapidly, they are set to zero, and the last diagonal element of
A 18 an approximation to an eigenvalue. This process continues up the di-
agonal of AU). After n — 1 such deflations, a Schur decomposition has been
computed.

4. The implicitly shifted QR iteration. The explicit computation of the QR
factorization 1s not carried out. Instead, the implicit Q theorem allows com-
putation of ZU) and AU to be interleaved.

5. Possible reordering of the Schur decomposition. If only k eigenvalues are of
interest, these can be efficiently moved to the leading portion of the final
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Schur matrix.

The last point gives a simple method for computing a partial Schur decomposition
of interest. Its drawback is the O(n?) storage required, as well as the O(n®) work
associated with the computation of a (full) Schur decomposition.

In the remainder of this article, we will develop the idea of a truncated QR
algorithm that only requires O(kn) storage and O(n?) work for computing a partial
Schur decomposition.

5. Partial Reduction to Band Hessenberg Form. The initial step of the
practical QR algorithm reduces A to an upper Hessenberg matrix via a sequence
of elementary unitary matrices. Unfortunately, these elementary matrices require
accessing the entire matrix, possibly destroying any sparsity or structure the matrix
possess. The Arnoldi reduction [2], on the other hand, requires only the application of
A with a vector. Moreover, it allows us to sequentially reduce A to upper Hessenberg
form, producing the leading portion of the final upper Hessenberg matrix at every
step. In fact, this was the motivation in Arnoldi’s study. When the matrix A is
Hermitian, the Lanczos reduction [21] is recovered.

Since our concern is in the solution of eigenvalue problems in which A is not only
large but expensive to apply, block Arnoldi reductions [39, 40] are considered. In
many instances, the cost of computing a few matrix vector products is commensurate
with that of one matrix vector product. There is also the issue of reliably computing
clustered and/or multiple eigenvalues. See [17] for references and information on a
block Lanczos reduction.

Let b > 0, an integer, be the block size. We say that

(5.1) AV, =V, H, +F,E]

is a block Arnoldi reduction of length m when VXAV, = H,, is a banded upper
Hessenberg matrix, Vng = I,.;, and an{Fm =0.
The columns of V,,, are an orthogonal basis for the block Krylov subspace

Kn(A,Uy) ={U;, AU, - A™ U L

H,, is the projection of A onto the column span of V,,,. If m > m = ceiling(n/b),
then F,,, = 0 and Hy, is the orthogonal reduction of A into banded upper Hessenberg
form. Note that if A = A¥ then H,, is a block tridiagonal matrix.

Figure 5.1 lists an algorithm to compute a block Arnoldi reduction. In practi-
cal computation, two steps of orthogonalization are needed to ensure that V11 is
orthonormal to Fp,41. If F,, 1s rank deficient, then care must be taken to fill out
the block with vectors that result in a V41 with orthonormal columns. Using the
notation established in § 2, we have

Gi1 - Gim
AV, =[ U, U, | Gz,
6 o Gm,.m—l Gm,m

+Um+1 Gm+1,mEZ:L

The following classical result explains that a block Arnoldi reduction is completely
specified by the starting block.
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o Let AV,,=V,,H,, + FmEﬁ be a length-m block Arnoldi reduction
1. Compute the orthogonal factorization Upy1Grgi1,m = Fon.
2. Vo= Vi Upnypr |-
3. W=AU,1; and Gmg1,mt1 = UZ WL

H.. VvIw
4. Hypyr = m )
+ |: Gm-l-l,mEﬁ Gm-l-l,m-l-l :|
VvIw
5. Fm+1:w—vm+1[G ]
m+1,m+1

Fia. 5.1. Ezxtending a Block Arnoldi Reduction

THEOREM 5.1. (Implicit Q) Let two length-m block Arnoldi reductions be given
by

AW, =W, B,, + C,,E],
AV,, =V, H, +F,EL,

where W, and V,, have orthonormal columns, and H,,, and B,,, are band Hessenberg
matrices with positive elements on the bth subdiagonal. If the first b columns of W,
and V,, are equal and Wng =0= VgFm, then H,, = B,,, W, = V,,, and
C,, =F,,.

Proof. The extension of [14, page 367] to a block formulation is straightforward.
The requirement on the elements on the bth subdiagonal is equivalent to uniquely
specifying the QR factorization of F; for j =1,...,m—1.0

6. The Implicit QR Algorithm on Band Hessenberg Matrices. We now
present a technical lemma that will provide useful in the remainder of the report.
One of its conclusions is that a step of the QR algorithm on a band upper Hessenberg
matrix remains one.

LEMMA 6.1. Let H— I = QR be a QR factorization, where H is an unreduced
upper Hessenberg matriz of order my = mb with lower bandwidth b. Denote el Re; =
pi. Then the following properties hold:

1. Q is an upper Hessenberg matriz with lower bandwidth b.
2. pi A0 fori=1,...,my— 1.
3. pm, = 0 1f and only if 7 is an eigenvalue of H.
4. e%b(RQ +7I) = Te%b if and only if T is an eigenvalue of H.
Proof. A sequence of elementary unitary matrices P; is easily constructed so that
PHE . PHH-TT)

mb—l :

is upper triangular [14, p. 233]. Each P; is designed to annihilate the entries below the
diagonal element of P2 | ... PH(H — 7T)e;. The product Py ---P,,, 1 is band upper
Hessenberg, and Pgb_l - PH(H — 71) is upper triangular. Set Q = Py -+ P, 1
and R = Q¥(H — 7I).

A simple calculation reveals that eZT+b(H —1I)e; = eiT_I_eripi. Since H is an
unreduced band upper Hessenberg matrix, 0 < |ef\ ,He;| = le], ,Qe;| |pi| < |pi] for
t=1,...,my — 1, establishing the second property.

The matrix H — 71 is singular if and only if 7 is an eigenvalue of H. The third
property follows immediately, since det(H — 7I) = det(R) = p1 - - - pp, is zero if and
only if pp,, 1s.
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The third property gives p,,, = 01if 7 is an eigenvalue of H. Since e%bR = e%bpmb,
the final property holds. O

When b = 1, we may substitute plane rotations in the above lemma. Note that
when b = 1, the QR factorization is an O(b(mb)?) process. Thus, for small values of
b the QR algorithm is an O((mb)?) process.

Practical deflation procedures are motivated by Part 4 of Lemma 6.1. If the
elements in the last row of RQ + 7I = Q7 HQ to the left of the diagonal element
are small, the diagonal element is regarded as an approximation to an eigenvalue.
The off-diagonal elements are set to zero, and the QR algorithm works on the leading
principal matrix of order bm — 1 of H. This procedure is summarized in the following
result.

LEMMA 6.2. Suppose p steps of the QR algorithm are applied on a band Hessen-
berg matriz of order bm. Let Q denote the accumulation of the unitary matrices in
the QR algorithm so that HQ = QHT.

If the p shifts are eigenvalues of H, then

H+ — [ Hil—,l HE::,Z :|
0 H7, ’

where Hy 1 contains the bm — p eigenvalues that were not used as shifts.

Proof. The proof is by induction on p. The base case p = 1 1s just Part 4 of
Lemma 6.1. Assume the lemma’s truth for p. Re-apply Part 4 of Lemma 6.1 on Hfl
to establish the lemma’s conclusion for p 4+ 1 eigenvalues as shifts. O

This lemma implies that the last p columns of Q are an unitary basis of the left
eigenspace associated with these deflated eigenvalues.

As remarked in § 4.1, practical implementations use the implicit QR algorithm.
We first outline this procedure and discuss its implications. Theorems 4.1 and 4.2
imply that only the unitary matrix matters, while the Implicit Q Theorem uniquely
specifies any procedure computing a partial band Hessenberg reduction. Let’s put all
this together.

Suppose we have the shifts 7,..., 7, and define the polynomial P(A) = (A —
7 )+ - (A = 7p,). The implicit QR algorithm first computes the QR factorization of

u
PH,)E; =UR; = [ 011 ] Rs,

where Ry is an upper triangular matrix of order b and Uy has (p + 1)b rows and b
columns. Then, the similarity transformation

H
g+ | Un 0 ] H [ Uy, 0 ]
m 0 I(m—p—l)b " 0 I(m—p—l)b

is performed. This updated matrix is returned to band Hessenberg form via a se-
quence of elementary unitary matrices. This is a straightforward generalization of the
familiar bulge chasing sweeps in the standard (b = 1) Hessenberg QR algorithm. The
crucial observation is that these bulge chasing sweeps in the band Hessenberg QR
algorithm do not modify U;. Thus, the implicit @ theorem implies that the implicit
QR algorithm on band Hessenberg matrices is equivalent to performing the explicit
version of the algorithm.

Francis [12] originally proposed use of the implicit QR algorithm in order to
perform the the algorithm on real matrices in real arithmetic. This allows a complex
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conjugate pair of shifts to be applied by using the degree 2 polynomial (A—71 )(A—71).
The LAPACK subroutines _SHEQR also allow more than two shifts to be applied. This
is based on the multi-shift QR algorithm [5] by Bai and Demmel for upper (b = 1)
Hessenberg matrices.

7. Computing Eigenvalues. Since our interest is in partial Schur decomposi-
tions, we use employ the following convergence criterion. Suppose that H,,Y,, =
Y. T, is a Schur decomposition ordered so that the k& best approximations to the
eigenvalues of interest are located in the initial portion of T,,. Thus,

(7.1) AV, Y = Vi Y Tl = [Fn BL Yl = |Gt m By, Y|

where H,, Y; = YT and the first k columns of Y,, are denoted by Y. In words,
the last & rows of Y need to be small. This Schur decomposition based criterion will
always ensure that we compute a partial Schur decomposition of a nearby matrix. If
approximate eigenvectors are of interest, they can be computed from Ty. If Tgs; =
s;0;, 1 <i <k, then

(7.2) AV, Yis; — V,, Yis:0 = F,EL Yys;

and so [|JAV,, Yis; — V., Yis:0;|| = ||[FnEL Yisi||. We call V,,,Ygs; a Ritz vector
and 6; a Ritz value. Note that Yis; = Yje;. The first Schur vector is always an
eigenvector.

For symmetric A, Saad [34] shows that as m increases, the quality of the ex-
tremal Ritz values improves to the well-separated extremal eigenvalues of A. For the
unblocked Arnoldi reduction, he also shows [36] a similar improvement for increasing
m. Unfortunately, given a large value of n, the value of m needed for a desired degree
of approximation may be impractical because of storage constraints required for the
Arnoldi vectors. This situation i1s particularly exacerbated for non-Hermitian A.

Because of the connection with a block Krylov space, a block Arnoldi Reduction
is a generalization of subspace iteration in that a sequence of subspaces are joined

together. Let K, (A, Up) = [ U; AU; .- AU, ] . The relationship
o --- 0 2
I ; i A
(7.3)  AKn(A,U)=K,(A, U + FET
0 - I, Q.

holds with each €2; a matrix of order . We denote the square matrix of order bm by
C,. Equation (7.3) is equivalent to the least-squares problem

(7.4) min||[(A"U;) — K (A, U)Q|| = ||Fm]|.

Let £2° be the least-squares solution partitioned conformably with the last column of
the square matrix in (7.3).

Denote the QR factorization of K,,(A,U;) = W, R,,,, where R,;, is an upper
triangular matrix of order bm. If R,, is invertible, then

AW, =W, (R, C,R;}) + F,(ELR'E,, )ET |

where we use the identity EL R;! = [ 0 --- 0 E’'R'E, ] . By the implicit Q
theorem, it follows that W, = V,,, f‘m(E%R;fEm) =F,, and H,, = R,,C,,R,},
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since the matrix of the first & columns of K,,(A, Uy) is equal U;. Thus, the starting
block characterizes the reduction. The residual matrix F,, is a matrix polynomial
function of the initial block.

Ruhe [30] showed that the least-squares solution of (7.4) gives the coefficients as-
sociated with the monic polynomial of degree m that minimizes ||1/3m(A)u1|| over all
monic polynomials 1/;m of degree m. Saad [36] uses projection arguments to solve the
minimization problem. For a block Arnoldi reduction, the situation is more compli-
cated and there does not appear to be an equivalent minimization property. See [41]
for a characterization of a block Arnoldi process in terms of matrix polynomials.

8. A Truncated QR Algorithm. The following elementary but technical re-
sult 1s needed for the connection with simultaneous iteration we desire.

LEMMA 8.1. Suppose that an integer p satisfies 2 < p < m, and let r = m — p.
Let AV,, = V,,H,, + FmEZ1 be a length v + p Arnoldi reduction, where H,, is an
unreduced band upper Hessenberg matriz. If

P
(X)) = [ =7),
i=1
then
p
(8.1) Up(A)Vin = Vit (H) + > 08 (A)FREL o, (H,y),
ji=1

where ;(A) = g:l(/\ — ) and P (A) = P (A=m).

t=j
Moreover,
(8.2) Up(A)V, = Vooo,(Hy) [ Er - E, |+ T

where Fy = o5 (A)F,ED 4,1 (H, By

Proof. The proof is by mathematical induction. Define m = r+ p. The subscripts
are suppressed on V,, and H,, for the proof. Since v1(A)V = V¢ (H) + F,,EL
where 11(A) = A — 7, the base case for p = 1 is established. Assume the lemma’s
truth for polynomials ¢;(A) of degree j < p. Let thp41(A) = (A — Tpy1)p(A). With
the induction hypothesis, it follows that

Up+1(A)V = (A = 71 1)8 (A)V
= (A —7pul) Vi, (H) + Zp; V] (A)F By oy (H)
=
= V(H — 71D (H) + Fr By (H)
+ (A =7l Zp; V] (A)F B o, (H)
i=

p+1
= Vi1 (H) + Y v (A FREL vy (H),
j=1

which establishes Equation (8.1).
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Since H is unreduced, ¥,_;(H) is a band Hessenberg matrix of lower bandwidth
(p— j)b. Thus Ef ¢, ;(H)E; = 0 for [ — p+ j < i, and the last matrix on the right-
hand side of Equation (8.1) is zero through its first rb columns. Equation (8.2) is
established. Fy is zero except when p = m. O

In plain words, Equation (8.2) shows that ,(A) applied to the first br columns
of V,, is equivalent ,(H,,) acting on the subspace consisting of the span of the
first br columns of Ij,,. The unitary basis constructed by the block Arnoldi reduction
provides the change of basis needed for the equivalence. The fundamental implication
here is that considerable computation can be avoided by working with a significantly
smaller H,, in the coordinate system given by V,,. We remark that for degree one
polynomials ¢4 (-), the block Arnoldi reduction is not truncated.

Recall from Theorems 4.1 and 4.2 that the unitary matrix Z®) links simultaneous
iteration with the QR algorithm. For a truncated QR algorithm, the previous lemma
nearly provides the crucial link.

Compute the QR factorization Q,R, = ¢,(H,,) [ E, --- E, ] . From (8.2),

we obtaln
1/)P(A)V7‘ = VmQTRT + Fl = V;.I—Rr + Fl.

This result gives rise to a truncated version of Theorem 4.1 with the starting subspace
defined by the span of the columns of V,.. This establishes the following theorem.

THEOREM 8.2. Assume the hypothesis of Lemma 8.1 with p < m. Let the QR
factorization Q. R, = ¢,(H,,) [ E, --- E, ] be given.

Then, the columns of V,,Q, provide an unitary basis for the R(1p(A)V,).

The theorem allows us to filter the eigenvalues of H,, in a desired order. By
applying a polynomial v, (-) that emphasizes the desired (or damps the unwanted)
eigenvalues, the column space of V,, is ordered into V,,Q,. This is a generalization
of the acceleration technique discussed by Stewart [45, 48] for simultaneous iteration.
This will be discussed further in § 8.1.

We may now exploit the connection between simultaneous iteration and a QR
iteration. This will allow us to affect an ordering of the eigenvalues of H,, suggested
by Theorem 8.2 without having to compute (or apply) the matrix polynomial ¢, (H,, ).

The QR algorithm on H,, with the p < m shifts 7,..., 7, gives H;, Q. =
Q. H . Lemma 6.1 gives that Q,, is a Hessenberg matrix of lower bandwidth bp,
since 1t 1s a product of p unitary matrices each of lower bandwidth b. If we equate the
first b columns of the previous matrix equality, we get

HF
(8.3) H,Q,=[Q W, W;]| Gl E
0

Post-multiplying Equation (5.1) with Q, and using (8.3), we obtain

AV,.Q, = V,H,,Q, + F,EL Q,,
(8.4) =V,QH +V,W,G}l,, El +F,E] Q,,

=V.QHf +FIE],
where

(8.5) Ff =V, WG}, +F,E QE
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Note the use of the identity EL Q, = [ 0 --- 0 ELQ,E, ] in Equation (8.5).
This proves the following result.

THEOREM 8.3. Assume the hypothesis of Lemma 8.1 with p < m. Suppose that the
QR algorithm on H,, with the p shifts 71, ..., 7, gives H;, Qp, = QuH},, where Qy,
15 a band Hessenberg matriz with lower bandwidth pb. If Q, is the matriz consisting
of the first rb columns of Q,, then

(8.6) AV,.Q, = V,.Q,Hf + FEF

where equations (8.3) and (8.5) define F}F.

If p = m, the previous theorem gives that application of m — 1 shifts gives
(8.7) AU =UfH} +F}.
If QR = H — 7,1, post-multiplication of (8.7) results in
(8.8) AUTQ=Uf(RQ+7,I) +FfQ = UfHIT + FfQ.

The right-hand side of (8.8) defines a new starting block of vectors (after orthogonal-
ization) for a subsequent block Arnoldi reduction.

The two theorems allow us to link simultaneous iteration with a truncated QR
algorithm. They show how a QR algorithm performed on H,, is equivalent to a
truncated QR algorithm on A.

8.1. Subspace Iteration. A classical method of solution for the large-scale
eigenvalue problem is subspace (or simultaneous) iteration [6, 10, 32, 33, 37, 45, 48].
Subspace iteration was originally introduced by Bauer [7], who called the method
Treppeniteration (staircase iteration). It is a straightforward method for computing
the eigenvalues of largest modulus of a matrix and is a generalization of the power
method in that a matrix representation of a subspace of size larger than one is em-
ployed.

Suppose we have the length one block Arnoldi reduction

(8.9) AU, = UGy +Fy.

Since the block size is b, G 1 is a dense matrix of that order representing the projection
of A onto the column span of Uj. Equation (8.9) is nothing more than a step of
simultaneous (or orthonormal) iteration in matrix form with error F.

If Gi1W = WT, is Schur decomposition ordered in decreasing order of mag-
nitude, then the initial columns of W contain the directions associated with the
dominant eigenvalues. Post-multiplying (8.9) with W gives

(8.10) AUW = U W(WIG, ;W) + F,W

as an accelerated length-one block Arnoldi reduction. Stewart [45, 48] shows how this
leads to improved convergence of orthonormal iteration to the dominant invariant
subspace. We emphasize that the convergence of U; W over Uj is not accelerated—
only ordered so that the initial columns of U; W contain the best approximations to
the dominant invariant subspace from among the columns of Uj. It is the span of these
columns that are accelerated toward the dominant invariant subspace. Chatelin [8,
pp- 253-257] and Saad [38, pp. 156—159] provide a discussion that builds upon the
work of Stewart [45, 48]. This technique is also referred to as orthonormal iteration
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with projection. It is a generalization of a Rayleigh—Ritz procedure to a non-Hermitian
matrix. Since it explicitly computes W it is an explicit projection step.

However, there is another way to affect the projection step. Suppose we are
interested in the k& < & dominant eigenvalues. If we perform b — & QR steps on Gy ;
with the associated unwanted eigenvalues, Lemma 6.2 implies that the & columns of
U, Z span the same space as those of the initial & of U;W. That is, orthonormal
iteration with projection is equivalent to implicitly restarting orthonormal iteration.

For block Arnoldi reductions, Theorems 8.2 and 8.3 explain how to perform a
projection step in an implicit fashion. A truncated QR algorithm shows how to
push the directions associated with the desired eigenvalues to the leading portion
of the underlying Krylov subspace. This strategy not only reduces the number of
applications with A but is also more stable than traditional methods of restarting
Arnoldi reductions.

The next section reviews traditional restarting mechanisms and points to the
recent work of Sorensen [43] as the impetus behind a truncated QR algorithm.

9. Restarting Arnoldi Reductions. During each step of computing a block
Arnoldi reduction, a partial orthogonal reduction of A into a banded upper Hes-
senberg matrix is produced. The eigenvalues of this Hessenberg matrix are used to
approximate a subset of the eigenvalues of the large matrix A. The approximation
to the eigenvalues of A generally improves as the order of the Hessenberg matrix
increases. Unfortunately, so do the cost and storage of the reduction.

A popular alternative is to define an iteration by restarting the reduction with
information in a length m < n/b block Arnoldi reduction. The hope is that this
restarted reduction has improved estimates to the eigenvalues of A.

The iteration is defined by a two-stage process. First, an Arnoldi reduction of
length m < n/bis computed. From the information available in this reduction, a new
reduction is computed. This defines the iteration and is deemed successful if improved
estimates to the eigenvalues of A appear in the subsequent reductions.

A restarted Arnoldi iteration was introduced by Saad [35] to overcome these
difficulties, based on similar ideas developed for the Lanczos process by Paige [28],
Cullum and Donath [9], and Golub and Underwood [15]. Karush [19] proposes what
appears to be the first example of a restarted iteration. Sadkane considers a restarted
block Arnoldi method using Chebyshev polynomials [39]. Scott has produced a block
Arnoldi code [40]. We call all these related schemes explicitly restarted Arnoldi meth-
ods because they are not truncated QR algorithms. They do not use the implicit
(or explicit) QR algorithm on H,, as a mechanism to restart a reduction. Instead,
the matrix A 1s explicitly applied to some linear combination of the columns of V.
Saad’s original scheme used a linear combination of the wanted Ritz vectors.

A relatively recent variant was developed by Sorensen [43] as a more efficient
and numerically stable way to implement restarting. This technique, the implicitly
restarted Arnoldi method, is implemented in the ARPACK [25] software package. The
paper [43] only considered the block size b = 1 and stated that the method is equivalent
to a truncated QR algorithm. The results in the preceding section showed a direct
connection. The remainder of this section reviews restarting schemes and then end
with an example.

9.1. Explicit Polynomial Acceleration. Suppose A is diagonalizable with
eigenpairs (x;,4;) for j = 1,...,n. If ¢(-) is some polynomial and we expand the
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e Start: Build a length m block Arnoldi reduction.
o lteration:
1. Compute the eigensystem of H,,, and determine convergence. Exit if a partial
Schur decomposition of order k satisfies the approximation criterion.
2. Restart: Compute a new starting block U = #(A)Y, where R(Y) C R(V.»).
3. Extend the length r block Arnoldi reduction to a length m one.

Fia. 9.1. A Polynomual Accelerated Arnoldi Iteration

current starting vector uj in terms of the basis of eigenvectors, then

(9.1) Y(A)uy = x1P(A1)C + -+ Xa (A )n

Assuming that the eigenpairs (x;, A;) are ordered so that the wanted k ones are at
the beginning of the expansion, we seek a polynomial such that

(9:2) jmax ()] < min ()]

A good polynomial (A) acts as a filter. Components in the direction of unwanted
eigenvectors are damped, or, equivalently, components in the direction of wanted
eigenvectors are amplified.

The acceleration techniques and hybrid methods presented by Saad in Chapter 7
of [38] attempt to improve explicit restarting by approximately solving the min-max
problem of equation (9.2). Motivated by Manteuffel’s scheme [26], Saad first proposed
the use of Chebyshev polynomialsin [37]. A Chebyshev polynomial ¢»(A) on an ellipse
containing the unwanted Ritz values is applied to the restart vector in an attempt
to accelerate convergence of the original ERA iteration. The polynomial is applied
with the use of the familiar three-term recurrence. Figure 9.1 outlines the procedure.
Note that after application of the polynomial filter, the reduction must be built from
scratch. The columns of the n by & matrix Y typically contain the Ritz or Schur
vectors of interest. By the results in § 7,

Y=UZ +AUE + -+ A" U E,,_,

so that Y itself is a matrix polynomial in U;.

9.2. Implicit Restarting. Figure 9.2 lists a truncated QR algorithm. Theo-
rems 8.2 and 8.3 give that this is mathematically equivalent to explicitly computing
(A—nI)- - (A—7,I)U; for the next starting vector. If p > 1, a restart from scratch
is not needed—a length r Arnoldi reduction remains.

In his paper that introduced implicit restarting, Sorensen [43] suggested using the
unwanted m —k eigenvalues of H,,, as shifts in line 2. By Lemma 6.2, HZ’ contains the
k eigenvalues of interest. As Sorensen showed in Lemma 3.10, this is mathematically
equivalent to an explicit restart with a linear combination of the wanted Ritz vectors
(or Schur vectors). This is called an ezact shift strategy.

It 1s important to realize that implicit restarting is always performed with a
basis of Schur vectors of H,, without explicit application of A or construction of
the approximating Schur vectors for A. Implicit restarting, as pointed out in § 8, is
formally equivalent to a Rayleigh-Ritz step (the projection) on the current Arnoldi
basis.
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e Start: Build a length m block Arnoldi reduction.
o lteration:
1. Compute the eigensystem of H,, and determine convergence. Exit if a partial
Schur decomposition of order k satisfies the approximation criterion.
2. Perform m — r = p steps of the QR algorithm with the p shifts =; resulting in
H,.Q. = Q.H},.
3. Restart: Postmultiply the length m block Arnoldi reduction with Q; (the first
br columns of Qm) to obtain the length r block Arnoldi reduction

AV, Q, =V,,Q.Hf + FTET.

4. Extend the length r block Arnoldi reduction to a length m one.

Fia. 9.2. A Truncated QR Algorithm.

9.3. Explicit and Implicit Restarting. We present a striking example that
compares the explicit and implicit restarting an (unblocked) Arnoldi reduction. Let
A € R'9%10 be zero everywhere except for diagonal elements

a1 =1, as=1,a33 =0,a44 = 0,05, = (5—4) - 107!, for i =1,...,6,

and ones on the subdiagonal. Suppose that the vector e; is used to compute an
initial Arnoldi reduction. We set k¥ = 2 and m = 4 with the interest to compute
the k eigenvalues equal to one. Using the two unwanted eigenvalues as shifts for
the QR iteration, an implicit restart computes the approximate partial real Schur
decomposition AQ, =~ Qa2Ra, where

94919 95789

Ro™ 1 _96052.10-% 1.0508 |

with eigenvalues equal to 1471.129168612228906-10~8. The number of restarts needed
was four, for a total of ten matrix vector products.

However, explicitly restarting the Arnoldi reduction stagnates if the expansion
coefficients are chosen as originally proposed by Saad. This restart chooses the lin-
ear combination V,,y « Vi, (s171 + s272), where v = |els;| [[fm|/(= ||AV s —
Vimsifi|]). The effect is to emphasize the Ritz vectors associated with Ritz values that
are not yet acceptable approximations. The resulting vector V,,y 1s a linear combi-
nation of the wanted Ritz vectors. If #; has a nonzero imaginary part, we set s; and
so to be the real and imaginary portions of the complex eigenvector of H,, associated
with ;.

In fact, the starting vector e; is continually computed at every restart. At every
restart,

O ==

H, =

O == O
_ o O O
o O oo

0

is computed. The MATLAB function EIG computes the two eigenvectors

sT=[0 57735 57735 57735 |,

s2 = —s1 +1.8-107"%T
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corresponding to the two eigenvalues equal to one. (Note that in exact arithmetic

81 = s2.) Choosing y4 to be an unit vector in the linear span of
[ ||AV451 —V4Sl|| ||AV452 —V4Sz|| 0 0 ]T

gives that V4, = te;.

The explanation is simple. Although e; is orthogonal to the eigenspace associated
with the eigenvalue one of A | it is not orthogonal to the invariant subspace associated
with the unit eigenvalue. Hence, why implicit restarting works where explicitly doing
so does not.

The major drawback of using a linear combination of the eigenvectors of H,, is
that they may form a poor choice for the starting vector. If H,, is defective, there
might not be enough eigenvectors associated with the wanted eigenvalues. A pair of
approximate eigenvectors i1s produced that are aligned to working precision. On the
other hand, using an expansion in terms of the Schur vectors of H,, gives a “richer”
starting vector.

We remark that both restarting techniques differ only in the polynomial filter
applied. For a detailed computational study comparing software based on these two
different restarting mechanisms, we refer the reader to [23]. For an unblocked Arnoldi
reduction, Morgan [27] shows that an implicit restarting mechanism is a better be-
haved numerical process than an explicit one.

10. Convergence of a Truncated QR Algorithm. Orthonormal iteration
with a projection step converges at a linear rate. Unlike orthonormal iteration without
the projection step, the jth column (1 < j < b) of V1 W, converges to the j Schur
vector (ordered in decreasing order of magnitude) at a rate of |Ay41/A;|. See [52] for
details on more general shifting strategies.

For the collection of subspaces underlying a block Arnoldi reduction, the situation
is considerably more complicated. Saad [35] considered the distance between a Ritz
vector drawn from a block Lanczos reduction to an eigenvector of A as a function of
the length m of the reduction. He extended his result to a & = 1 Arnoldi reduction
in [36] with the assumption that A is diagonalizable. Jia [18] removed this restriction.
One of Jia’s main conclusions is that although a Arnoldi reduction may produce an
approximation to an eigenvalue of A, the associated eigenvector may not be well
approximated by the reduction. This situation occurs when the eigenvector is sensitive
to perturbations or, in other words, is ill conditioned. The resolution of this dilemma
is to instead consider the convergence of an invariant subspace.

Suppose that & = bf, where k i1s at least as large as the actual number of Ritz
values needed. Since AV, = V,H, + FZEZT, a truncated QR algorithm is attempting
to drive ||Geg1 || to zero so that V, approaches an invariant subspace. Suppose we
complete this block Arnoldi reduction to the full one:

H, M,
(10.1) Alvi Wl=[Vve W]l g o
Watkins and Elsner [52] discuss the rate of convergence of ||Gey1 ]| as a function of
the shifts given mild conditions on the initial block Uy within the context of a QR
algorithm.

When |Gy ¢|| is small, the R(V,) is an exact invariant subspace for A — Fsz
where ||F,UH|| = [|Get1,l]. However, whether the distance from V, to an invariant
subspace 1s small depends upon the sensitivity of A’s invariant subspaces.
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Stewart [46] considers how close V, is to an invariant subspace of A for small
[|Get1,e|]- He considers whether an orthonormal matrix Y deviating little from I, can
be found so that V,Y is an invariant subspace for A. Stewart chooses

I, —PY (I, + PHP)~1/2 0
Y = Hy-1/2 |>
P I, 0 (L,_, + PPH)

where, since both I; + PHP and I,,_, + PP are Hermitian positive definite matrices,
the square roots are uniquely defined. The answer to whether the column space of V,
is an accurate approximation to an invariant subspace of A becomes that of analyzing
the interaction of P with H,, My, Gy ¢ and C,. The following result explains the
situation.

THEOREM 10.1. Suppose that AV, = V,H,; + FZEZT 15 a length £ block Arnoldi
reduction. Suppose the reduction is completed to a band Hessenberg decomposition of
A given by Equation (10.1), where |Gy e]| = ||Fe||. Let

. ||IXH; — C/X
6¢ = sep(Hy, Cp) = nin %,

and denote Bop1 = ||Gega ], ve = ||Cell.
If ABoy1ye < 62, there is a matriz P that satisfies the bound

IP|| < 2721
be

so that the columns of Zy = (Vo + WP)(I 4+ PHP)~=1/2 are an unitary basis for an
mvartant subspace of A.

Proof. The conclusion now follows directly from Theorem 4.1 of Stewart [46]. O

The size of 7, measures the amount of coupling between the R(V,) and R(W).
The reciprocal of §; measures the sensitivity of the R(Z,) as an invariant subspace.
Varah [49] shows that if the matrices involved are highly nonnormal, the smallest
difference between the spectrums of Hy and C, may be an overestimate of the true
separation.

Theorem 10.1 shows the dependence of ;41 upon v, and &, in determining the
quality of the R(V;) as an eigenspace of A. Since VEZ, = (I+PHP)~1/2 Stewart [46]
shows that the singular values of P are the tangents of the canonical, or principal,
angles [8, 13, 46] between the two spaces spanned by the columns of V, and Zg,
respectively.

Golub and Wilkinson [16] also examine the many practical difficulties involved
when computing invariant subspaces. They conclude that working with a basis of
Schur vectors is a better-behaved numerical process. Within the context of subspace
iteration, Stewart [48] also arrives at the same conclusion.

In conclusion, that a Ritz vector drawn from a block Arnoldi reduction never
“settles down” implies that we must enlarge our view. What we should try to ap-
proximate 1s a well-conditioned invariant subspace. A truncated QR algorithm allows
us to do this by varying b, £, and r.

11. Practical Considerations. We briefly discuss two important issues re-
quired for a practical truncated QR algorithm. They are a shift selection strategy
and deflation scheme.
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11.1. Shift Selection. The shift strategy that leads to cubic and quadratic con-
vergence rates of convergence for the QR algorithm on Hermitian and non-Hermitian
eigenvalue problems cannot be adopted for a truncated QR algorithm. The shift
strategy requires information available only when a full band Hessenberg reduction is
at hand.

An exact shift strategy was already mentioned in § 9.2. By using the unwanted
eigenvalues as shifts, the interesting Ritz values are places in H;. This is the strategy
used by ARPACK. However, it is not clear which of the bm—#k eigenvalues should be used
as shifts when a block Arnoldi reduction is used. In this situation, m — 1 shifts can
be applied, resulting in a length one Arnoldi reduction. Equations (8.7)—(8.8) explain
how to apply the mth shift. Thus, even if k eigenvalues are of interest, the value r
may be varied in the algorithm of Figure 9.2 from k for an adaptive strategy. This is a
variation on a strategy proposed by Baglama, Calvetti, and Reichel [3] for symmetric
A. They employ Leja shifts and demonstrate how this strategy can outperform an
exact shift strategy for small m. They have also extended their results to a block
formulation [4].

The question of a near-optimal shift strategy is still the work of current research.
However, it is clear from the results in [52] that an approximation ¢,(A) to the
minimization problem (9.2) is required. This should help guide the selection of m and
r relative to k. The recent report [44] discusses an adaptive strategy for symmetric
eigenvalue problems.

11.2. Deflation. Saad [38, pp. 234-235] explains how a deflation scheme leads
to a far more reliable and efficient algorithm. When a Ritz pair (z,0) has a small
residual, it 1s locked into the leading portion of an Arnoldi reduction. Subsequent
Arnoldi reductions are computed so that V,, is orthonormal to this Ritz vector. This
is equivalent to working with the deflated Krylov subspace K, ((I — zz’)A, U,).
As Ritz pairs of this deflated matrix are computed, a partial Schur decomposition is
incrementally computed. This is an outline of the procedure discussed in [38, pp. 179—
182]. Scott [40] employs this deflation scheme within a block Arnoldi reduction.

However, these explicit deflation schemes require that the Arnoldi reduction be
restarted from scratch in order to deflate the Ritz pair. The recent paper [24] instead
explains how to deflate the Ritz pair in an implicit fashion, thus avoiding the need
to build a new reduction. Although this implicit deflation technique assumed an
unblocked Arnoldi reduction, the scheme is easily extended to a block reduction. The
report [22] considers a practical implementation of a truncated QR algorithm in detail.
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